

Victor Magar, Ph.D., P.E. and Bruce Alleman, Ph.D. Battelle Memorial Institute

Enhanced Bioremediation Technologies:Definition

 Engineered Applications Designed to Stimulate Biological Transformations of Contaminants in Groundwater

Technology Progression

- Bacterial Metabolism and Growth
- II. Respiratory Processes and Metabolism
- III. Biotreatment of Major Groundwater Contaminants
- IV. Biodegradation/Biotransformation of Chlorinated Aliphatic Hydrocarbons (CAH)
- V. Anaerobic/Aerobic Technologies and Applications
- VI. Case Histories
- VII. Tech Transfer (SOW, Cost Estimator, Design Manual, TDS)

Bacterial Metabolism and Growth

Bacterial Metabolism and Growth (Cont.)

- Bacterial Growth
 - Cell Division: 20- to 30-minute doubling time (optimal)
 - Single Bacterium: 1 million offspring in 10 hrs, in 2 mL of medium

Bacterial Metabolism and Growth (Cont.)

Bacterial Growth: Start w/ a single bacterium (2 x 10⁻⁹ g); 30-minute doubling time

Bacterial Metabolism and Growth (Cont.)

- Bacterial Growth
 - Cell Division: 20- to 30-minute doubling time (optimal)
 - Single Bacterium: 5 billion offspring in 6 to 10 hrs,
 in 2 mL of medium
- Why don't we see unlimited growth?
 - Requires unlimited nutrient and substrate supply,
 which rarely occurs in the environment
 - Assumes an unchanging environment
 - Model does not include cell death

- I. Overview of Microbiology
- II. Respiratory Processes and Metabolism
 - A. Oxidation-Reduction Reactions
 - B. Aerobic Respiration
 - C. Anaerobic Respiration
 - D. Summary
- III. Biotreatment of Major Groundwater Contaminants
- IV. Biodegradation/Biotransformation of Chlorinated Aliphatic Hydrocarbons (CAH)
- V. Anaerobic/Aerobic Technologies and Applications
- VI. Case Histories
- VII. Tech Transfer (SOW, Cost Estimator, Design Manual, TDS)

Respiration: Bacteria need to breathe

Humans

- Carbon source: Food
- Energy source (e-donor): Food
- Respiration (e- acceptor): Oxygen
- Nutrients: Food and vitamins
- Water: Food or drink

You

Bacteria

- Carbon source: Organic carbon
- Energy source (e-donor): Organic carbon
- Respiration (e⁻ acceptor): Oxygen (aerobic); others (anaerobic)
- Nutrients: Nitrogen, phosporous, minerals
- Water: Groundwater or soil moisture

- Oxidation-Reduction (Redox) Reactions: What is an Electron Donor/Electron Acceptor?
 - Bacteria require electrons for energy (Electron Donor)
 - When organic matter (carbon) is oxidized it loses an electron (CO₂ is the most oxidized form of carbon)
 - Energy released in the form of electrons
 - Bacteria use the electrons to produce energy
 - Bacteria require an electron sink (Electron Acceptor)
 - When electron acceptors gain electrons they become reduced

- Aerobic Respiration
 - Electron Donor: Organic Compound (e.g., contaminant)
 - Electron Acceptor: Oxygen (DO, in water)
- Anaerobic Respiration

- Aerobic Respiration
- Anaerobic Respiration
 - Organic Electron Donor: Organic Compound (e.g., contaminant or alternative food source added to groundwater)
 - Inorganic Electron Donor: Hydrogen (H₂)
 - Electron Acceptors:
 - NO₃⁻ (nitrate reduction)
 - Fe³⁺ (iron reduction)
 - Mn⁴⁺ (manganese reduction)
 - SO₄ = (sulfate reduction)
 - CO₂ (methanogenesis)
 - Halogenated Contaminant (halorespiration)

Biological Respiration (Cont.)

Enhanced Bioremediation Technologies: Example Equations

Respiratory process: Halorespiration

e- donor: Lactate

e- acceptor: Chloroethenes

Lactate fermentation:

Lactate Acetic Acid

$$C_3H_6O_3 + H_2O \rightarrow CH_3COOH + CO_2 + 2H_2$$

PCE dechlorination to ethene:

Ethene
$$C_2CI_4 + 4H_2 \rightarrow C_2H_4 + 4HCI$$

PCE + 2Lactate + 2H₂O → Ethene + 2Acetic Acid + 2CO₂ + 4HCI

Biological Respiration (Cont.)

NAS Fallon Enhanced Anaerobic Dechlorination Study

- Target contaminant: PCE
- Electron donors: Lactate or benzoate + EtOH
- Sulfate: >10,000 mg/L

NAS Fallon Enhanced Anaerobic Dechlorination Study

- Observations
 - Redox reduction from +100 to -300 mV
 - Iron sulfide precipitation indicates sulfate reduction
 - Methanogenesis: minimal
 - PCE dechlorination: minimal
- Conclusions
 - e donor addition stimulated significant biological activity
 - High sulfate inhibited PCE dechlorination
 - Confirmed by others in laboratory microcosms

- Bacteria need carbon and energy for growth
- Bacteria use electrons for energy (respiration)
 - The source of electrons is the electron donor
- This process requires an electron sink
 - The electron sink is the electron acceptor
- Aerobic electron acceptor is oxygen (O₂/DO)
- Anaerobic electron acceptors
 - $-NO_3^-$, Fe³⁺, Mn⁴⁺, SO₄=, CO₂
 - Halogenated Compounds can serve as
 electron acceptors under appropriate conditions

- Overview of Microbiology
- II. Respiratory Processes and Metabolism
- III. Biotreatment of Major Groundwater Contaminants
 - A. Objectives of Engineered Bioremediation
 - B. Biotreatment of Major Groundwater Contaminants
- IV. Biodegradation/Biotransformation of Chlorinated Aliphatic Hydrocarbons (CAH)
- V. Anaerobic/Aerobic Technologies and Applications
- VI. Case Histories
- VII. Tech Transfer (SOW, Cost Estimator, Design Manual, TDS)

Enhanced Bioremediation Technologies: Objectives of Engineered Bioremediation

- Find the limiting factor(s) for bacterial growth on contaminants
 - Electron acceptor limitations (e.g., insufficient dissolved oxygen [DO] for aerobic processes)
 - Limited presence of contaminant-degrading bacteria (e.g., low biological count)
 - Low contaminant bioavailability (e.g., large-molecular-weight, hydrophobic compounds)
 - Inability for contaminant to be degraded (e.g., PCE cannot be degraded aerobically)
 - Presence of inhibitory substances (e.g., very high contaminant concentrations may be toxic)
 - Electron donors limitations (e.g., insufficient electron donor for halorespiration)
- Engineer a treatment approach that overcomes limiting factors

Enhanced Bioremediation Technologies: Objectives of Engineered Bioremediation

- Find the limiting factor(s) for bacterial growth on contaminants
- Engineer a treatment approach that maximizes contaminant degradation by overcoming limiting factors

Enhanced Bioremediation Technologies:Objectives of Engineered Bioremediation

Engineer a treatment approach that maximizes contaminant degradation by overcoming limiting factors

Limiting Factor	Example	Solution	Example Technology
Electron Acceptor	Insufficient DO	Add oxygen	Bioventing; Sparging
Bacteria	Low biological count	Stimulate growth; Bioaugment	Biostimulation; Bioaugmentation (Innovative)
Bioavailability	Contaminants with low solubility and high sorption	Add surfactants (innovative); More time for biodegradation; Enhance mixing	Surfactant addition; Natural attenuation; Biopile/composting
Inhibition	High DO in a PCE- contaminated aquifer	Remove DO	Biostimulation (e.g., add an organic substrate)

Biotreatment of Major Groundwater Contaminants

- Biotransformation of Petroleum Hydrocarbons (briefly described)
 - BTEX
 - TPH
 - PAHs
- Biotransformation/Biodegradation of Chlorinated Aliphatic Hydrocarbons (focus of this talk)
 - Chloroethenes: PCE, TCE, DCE isomers, VC
 - Chloroethanes: 1,1,1- & 1,1,2-TCA, 1,1- and 1,2-DCA
 - Chloromethanes: Chloroform, methylene chloride

Biotreatment of Major Groundwater Contaminants

- Petroleum Hydrocarbon Biodegradation
 - Primarily degraded aerobically
 - Air sparging
 - Bioventing
 - Oxygen Release Compounds
 - Increased evidence of anaerobic transformation/degradation
 - Very important for natural attenuation

Biotreatment of Major Groundwater Contaminants

- Chlorinated solvent biodegradation/biotransformation
 - Can involve aerobic or anaerobic processes
 - Generalities:
 - Aerobic CAHs are oxidized to CO₂
 - Anaerobic CAHs are dechlorinated
 - Mildly Reduced Low-chlorinated CAHs (VC and DCE) can be oxidized

- I. Overview of Microbiology
- II. Respiratory Processes and Metabolism
- III. Biotreatment of Major Groundwater Contaminants
- IV. Biodegradation/Biotransformation of Chlorinated Aliphatic Hydrocarbons (CAH)
 - A. Reductive Dechlorination
 - B. CAH as a Growth Substrate
 - C. Aerobic Cometabolism
 - D. Summary of CAH Biodegradation
- V. Anaerobic/Aerobic Technologies and Applications
- VI. Case Histories
- VII. Tech Transfer (SOW, Cost Estimator,

Biodegradation/Biotransformation of CAH

- CAH biodegradation mechanisms
 - Reductive Dechlorination
 - CAH as a growth substrate
 - Aerobic Cometabolism
 - Summary of CAH Biodegradation

Biodegradation/Biotransformation of CAH

- Reductive Dechlorination
 - Halorespiration: CAH is used as an electron acceptor
 - Process requires an external electron donor
 - Lactate, propionate, butyrate
 - Glucose, sugar beet waste, molasses
 - H_2
 - CAH gains an electron and is reduced (e.g., reductive process)
 - Chlorines are removed from CAH (e.g., dechlorination)

Biodegradation/Biotransformation of CAH

Reductive Dechlorination (sequential process)

2 Lactate
$$\rightarrow$$
 4H₂

PCE \longrightarrow ethene

4H+ 4Cl

Biodegradation/Biotransformation of CAH

- Reductive Dechlorination
 - Requires very reduced conditions (methanogenic is ideal)
 - Kinetics (dechlorination rates)
 - Fastest for PCE dechlorination to TCE and c-DCE
 - Slowest for VC dechlorination to ethene
 - Requires an adequate supply of electron donor
 - May require extensive acclimation (months or longer)
 - Potential incomplete dechlorination end points:
 DCE and VC (because of different limiting factor:
 bacteria type)

Enhanced Bioremediation Technologies:Biodegradation/Biotransformation of CAH

- CAH biodegradation mechanisms
 - Reductive Dechlorination
 - CAH as a growth substrate
 - Aerobic Cometabolism
 - Summary of CAH Biodegradation

Biodegradation/Biotransformation of CAH

- CAH as a growth substrate
 - Bacteria use CAH for Carbon and Energy
 - Limited to DCE & VC, MCA & DCAs
 - Electron Acceptors
 - Aerobic: Oxygen
 - Anaerobic: Manganese or iron-reducing conditions

Biodegradation/Biotransformation of CAH

Enhanced Bioremediation Technologies:Biodegradation/Biotransformation of CAH

- CAH biodegradation mechanisms
 - Reductive Dechlorination
 - CAH as a growth substrate
 - Aerobic Cometabolism
 - Summary of CAH Biodegradation

Biodegradation/Biotransformation of CAH

- Aerobic Cometabolism
 - Bacteria use enzymes (biological catalyst) to catalyze substrate degradation
 - Non-specific enzymes
 - Cannot distinguish between a beneficial substrate and a nonbeneficial substrate
 - Results in accidental (fortuitous) degradation of contaminants
 - Common contaminants amenable to cometabolism
 - TCE, DCE, VC
 - TCA, DCA
 - Chloromethanes
 - Others (e.g., MTBE)
 - PCE and Carbon Tetrachloride cannot be degraded cometabolically

- Aerobic Cometabolism (example)
 - Methanotrophs
 - Enzyme: methane monooxygenase to oxidize CH₄
 - Non-specificity: Methane monooxygenase cannot distinguish between methane and TCE
 - Fortuitous degradation: Grow methanotrophs on methane and they accidentally degrade TCE
 - Redox reactions
 - Methane is the electron donor
 - Oxygen is the electron acceptor
 - TCE is a dead end for bacteria

Biodegradation/Biotransformation of CAH

- Aerobic Cometabolism (requirements)
 - Primary growth substrate (electron donor)
 - Gaseous: Propane & methane
 - Aqueous: Toluene, phenol, isopropyl benzene
 - Oxygen (Electron Acceptor)
 - Bacteria that can both degrade the cosubstrate and cometabolically degrade the contaminant

- CAH biodegradation mechanisms
 - Reductive Dechlorination
 - CAH as a growth substrate
 - Aerobic Cometabolism
 - Summary of CAH Biodegradation

- Summary of Biodegradation Mechanisms
 - Reductive Dechlorination: CAHs can be dechlorinated under strict anaerobic conditions
 - CAH as a growth substrate: CAHs are used for carbon and energy (chloroethenes restricted to VC and DCE) under aerobic or mildly reduced conditions
 - Cometabolism: CAHs destroyed fortuitously by enzymes made to degrade a primary growth substrate

- I. Overview of Microbiology
- II. Respiratory Processes and Metabolism
- III. Biotreatment of Major Groundwater Contaminants
- IV. Biodegradation/Biotransformation of Chlorinated Aliphatic Hydrocarbons (CAH)
- V. Anaerobic/Aerobic Technologies and Applications
 - A. Technology Descriptions
 - B. Applicability of Aerobic Technologies
 - C. Advantages and Disadvantages
- VI. Case Histories
- VII. Tech Transfer (SOW, Cost Estimator, Design Manual, TDS)

Aerobic Technologies and Applications

- Extract-(Treat)-Reinject (ETR)
 - Pump and Treat: Aboveground treatment plus groundwater aeration
 - In Situ Cometabolism: Delivery of dissolved oxygen source and enzyme- inducing substrate (phenol, etc.) (regulations may require aboveground treatment)
 - Enhanced Anaerobic Dechlorination:
 Delivery of an electron donor
 (regulations may require aboveground treatment)

Aerobic Technologies and Applications

Sparging:

- Cometabolic Air Sparging: Delivery of oxygencontaining gas with enzyme-inducing growth substrate (e.g., methane or propane)
- Anaerobic Sparging (Innovative): Delivery of an inert gas (N₂ or Ar) with low (<2%) H₂ levels

Aerobic Technologies and Applications

- Advantages of Aerobic Technologies
 - Contaminants are completely oxidized to CO₂
 - Sparging and other aerobic applications are well understood
 - O₂ is an inexpensive electron acceptor
- Disadvantages of Aerobic Technologies
 - Cannot be used for PCE or Carbon Tetrachloride
 - Limited radius of influence
 - Sparging <15 ft</p>
 - Pump and Treat depends on the aquifer hydraulic conductivity
 - May negatively affect natural dechlorination
 - Iron precipitation may clog formation

Anaerobic Technologies and Applications

- Advantages of Anaerobic Technologies
 - Have the potential to dechlorinate to non-toxic byproducts
 - Microbiology is well understood
 - Some compounds (PCE & CT) can only be dechlorinated
 - Some sites already are anaerobic
- Disadvantages of Anaerobic Technologies
 - Primary disadvantage: Potential incomplete dechlorination
 - Can result in VC production
 - Distribution of electron donor is a major challenge
 - Electron donor must overcome competing electron acceptors

Enhanced Bioremediation Technologies:Steps Toward Implementation

- Establish site conditions and types of contaminants present
- Identify suitable treatment processes
- Conduct bench-scale treatability studies to validate biological process
- Perform field pilot study to validate technology and collect pertinent scale-up information
- Design full-scale system
- Gain regulatory approval
- Implement treatment process
- Conduct performance monitoring and long-term monitoring

Major Cost Components of Each Technology

- Bench-scale studies
- Pilot-scale studies
- Design
- Reporting requirements
- Regulatory approval process
- Installation
- Substrates and nutrients
- Performance monitoring
- Long-term monitoring
- Site closure

- I. Overview of Microbiology
- II. Respiratory Processes and Metabolism
- III. Biotreatment of Major Groundwater Contaminants
- IV. Biodegradation/Biotransformation of Chlorinated Aliphatic Hydrocarbons (CAH)
- V. Anaerobic/Aerobic Technologies and Applications
- VI. Case Histories
 - A. Cometabolic Air Sparging at McClellan AFB
 - B. Reductive Dechlorination at Alameda Point
- VII. Tech Transfer (SOW, Cost Estimator, Design Manual, TDS)

Case History: Cometabolic Air Sparging (CAS) at McClellan AFB to Remediate Chloroethene-Contaminated Aquifers

Conducted by Battelle Memorial Institute

In Conjunction with: U.S. Air Force, Environics (AFRL-MLQE)

and Oregon State University (OSU)

Funding: Environmental Security Testing and Certification Program (ESTCP)

Case History: Cometabolic Air Sparging Conceptual Design of Cometabolic/In Situ Air Sparging

Case History: Cometabolic Air Sparging Impacted Area and Surroundings

- COCs include solvents (TCE and DCE) in soil and groundwater
- Southeastern portion of the base (555 acres)
- Engine repair shops, plating shops, washracks, industrial waste line, above- and belowground storage tanks, runway access, disposal pits
- Two major groundwater and five soil-gas plumes identified
- Groundwater plumes extend approximately 1,750
 feet off base to the east (Controlled by P&T system)
- Groundwater table is 110 ft bgs

Case History: Cometabolic Air Sparging Site Histories

Contaminant Concentrations

- Major Groundwater Contaminants
 - TCE <1,000 μg/L; *c*-DCE<600 μg/L
- Minor Groundwater Contaminants
 - PCE <2.5 μg/L</p>
 - 1,1- and t-DCE <10 μg/L</p>
 - 1,1-DCA <10 μg/L</p>
- Soil Gas Contaminants
 - TCE <800 μg/L</p>
 - c-DCE <400 μg/L</p>

Unique or Confounding Site Characteristics

- Tight soil matrix
 - Heterogeneities lead to uneven distribution of air
- Nutrient limitations
 - Low nitrate (≈ 5 mg/L)
- Propane-degrading bacteria
 - Low number of bacteria, require acclimation for growth

Case History: Cometabolic Air Sparging Demonstration Layout

Case History: Cometabolic Air Sparging Sparge and SVE Well Details

Case History: Cometabolic Air Sparging Propane-Fed Zone, Looking North

Case History: Cometabolic Air Sparging Multilevel Monitoring Well

- 2 groundwater monitoring points (113 & 117 ft bgs)
- 4 soil gas points(30, 65, 85, 95 ft bgs)

Case History: Cometabolic Air Sparging Propane Addition to Groundwater

- Sparge rate = 10 scfm/well
- 2% propane added intermittently to the Demonstration Zone
- Groundwater monitored for
 - Propane, DO, TCE, c-DCE
- Soil gas monitored for
 - Propane, TCE, and c-DCE, O₂
- 1-month instrument calibration and testing required
- Propane addition began on day 36

Case History: Cometabolic Air Sparging

Active Zone at C2-117 ft (MW-C2-GW2)

Case History: Cometabolic Air Sparging

Control Zone at A3-117 ft (MW-A3-GW2)

Case History: Cometabolic Air Sparging Stimulation of Propane-Degrading Bacteria

- Acclimation of propane-degrading bacteria
 - Required about 40 to 50 days
 - Similar to laboratory microcosm studies
 - Stimulation occurred without NO₃⁻ addition
- Pulsed additions of air and propane for over 100 days led to effective TCE and c-DCE removal in the saturated zone where effective propane delivery and uptake occurred
- No TCE or c-DCE degradation in wells not fed propane
- No TCE or c-DCE degradation in the control site

Case History: Cometabolic Air Sparging Lessons Learned

- Demonstrated the use of propane to promote the cometabolic degradation of TCE and c-DCE
- Air Sparging without propane did not effectively remove TCE and c-DCE
- Background nitrate concentrations insufficient to maintain propane and TCE degradation

Case History: Cometabolic Air Sparging Lessons Learned

- Addition of ammonia to sparge gas ongoing
- Process optimization will be explored in Spring 2000
- Investigate vadose zone activity
- Add nitrogen (NH₄+) to the vadose zone
- Simplify pilot testing approach
 - Fewer monitoring wells
 - Reconsider need for a control site

Case History: Cometabolic Air Sparging Points of Contact

- Cathy Vogel (ESTCP)
 - - (703) 696-2118
 - vogelc@acq.osd.mil
- Alison Lightner (AFRL-MLQE, Tyndall AFB)
 - **–** (850) 283-6303
 - Alison.lightner@mlq.afrl.af.mil
- www.estcp.org\projects\cleanup\index.htm
- Victor Magar (Battelle Principal Investigator)
 - - (614) 424-4604
 - magarv@battelle.org

Case History: Treatability Test for In Situ Anaerobic Dechlorination at Alameda Point (formerly Alameda Naval Air Station)

Conducted by Battelle Memorial Institute

In Conjunction with: U.S. Air Force, Environics (AFRL-MLQE),

Naval Facilities Engineering Service Center (NFESC),

Cornell University,

and U.S. Environmental Protection Agency (USEPA)

Funding: Environmental Security Testing and Certification Program (ESTCP)

Case History: In Situ Anaerobic Dechlorination Technology Application

- Site was selected as one of 5 sites for validation of enhanced anaerobic dechlorination:
 - Reductive Anaerobic Biological In Situ Treatment Technology (RABITT)
 - Navy support, Regulatory approval, suitable site logistics

Case History: In Situ Anaerobic Dechlorination Background – Site History

DNAPLs found in groundwater under repair shop

Contaminant	Maximum Concentration (µg/L)
TCE	24,000
DCE	8,600
VC	2,200
Ethene	Not reported

Case History: In Situ Anaerobic Dechlorination Site Map

Case History: In Situ Anaerobic Dechlorination Site Map (Impacted Area)

Case History: In Situ Anaerobic Dechlorination

Site 4: Characterization Data

- Hydrogeology
 - 0 to 7 ft bgs: Sand and gravel fill
 - 7 to 28 ft bgs: Fine to medium sands with varying amounts of clay and silt
 - Depth to groundwater: 4 to 6 ft bgs
 - hydraulic conductivity \$\to\$10⁻³
 cm/sec
- Geochemistry
 - Dissolved oxygen < 1.0 mg/L
 - Sulfate: ~300 mg/L
 - Dissolved methane < 0.1 mg/L
 - DOC: ~120 mg/L
 - pH between 7.0 and 7.8
 - Total alkalinity 0.013 eq/L

- Contaminant Profile
 - Daughter products present indicating reductive dechlorination occurring naturally, but slowly

Case History: In Situ Anaerobic Dechlorination Microcosm Study

- Electron Donors:
 - Yeast Extract (200 mg/L)
 - Propionate (1.5 mM)
 - Lactate (3 mM)
 - Butyrate (3 mM)
 - Lactate/Benzoate (1.5 mM each)
- All donors show conversion of TCE to ethene after 162 days of incubation
- Butyrate shows the most consistent and rapid conversion of TCE to ethene

Case History: In Situ Anaerobic Dechlorination System Design

- Three ½-in. injection wells screened from 24 to 27 ft
- Nine 1-in. monitoring wells screened from 25 to 26.5 ft
- One 4-in. extraction (supply) well screened from13 to 16 ft
- One 2-in. hydraulic gradient control well screenedfrom 24 to 27 ft
- One 2-in. background well screened from 24 to 27 ft
- Plot dimensions: 3 x 20 ft
- Associated aboveground components

Case History: In Situ Anaerobic Dechlorination System Design (plan view)

Case History: In Situ Anaerobic Dechlorination Site Layout: Injection Wells

Case History: In Situ Anaerobic Dechlorination Site Layout: Monitoring Wells

Case History: In Situ Anaerobic Dechlorination System Design (Profile View)

Case History: In Situ Anaerobic Dechlorination Design Criteria

Total System Pumping Rate: 0.62 L/min (236 gal/day)

- Stock Solution 1: Tracer and pH buffer
 - Stock Concentrations:
 - [NaBr] = 5.8 g/L
 - [NaHCO₃] = 85 g/L
 - Target In SituConcentration
 - [NaBr] = 100 mg/L
 - [NaHCO₃] = 1.6 g/L
 - Feed Rate: 12 mL/min

- Stock Solution 2: Electron donor and nutrients
 - Stock Concentrations:
 - [Butyric Acid] = 1.25 M
 - [Yeast Extract] = 8.3 g/L
 - Target In SituConcentrations:
 - [Butyric Acid] = 3 mM
 - [Yeast Extract] = 20 mg/L
 - Feed Rate: 1.5 mL/min

Monitoring Parameters

- Geochemical Parameters
 - DO
 - nitrate
 - Fe(II)
 - sulfate
 - methane
 - VFAs
 - pH
 - temperature

- Contaminants & Daughter Products
 - PCE
 - TCE
 - DCEs
 - vinyl chloride
 - ethene
 - ethane

- ProcessMeasurements
 - bromide
 - flow rates
 - injection pressures

Case History: In Situ Anaerobic Dechlorination Observations

- TCE transformed to cis-DCE, VC, and ethene
- Bromide tracer distributed throughout testing zone
- Redox potential depressed (~ –200 mV)
- Biological indicators
 - Electron Acceptors
 - Decreases in oxygen and nitrate
 - Increases in Fe(II) observed
 - Sulfate fluctuating
 - Methane production observed

Chloroethene Profile: Injected Water

Chloroethene Profile: 5 Feet from Injection

Chloroethene Profile: 10 Feet from Injection

Chloroethene Profile: 15 Feet from Injection

Case History: In Situ Anaerobic Dechlorination Lessons Learned

- Biologically catalyzed reductive dechlorination can be stimulated at Alameda Point, Site 4
- Reduction of TCE proceeds to ethene
- Delivery of substrate at a large scale may run into challenges due to a less hydraulically conductive layer present at approximately 15 ft bgs

Case History: In Situ Anaerobic Dechlorination Points of Contact (EFA or EFD)

- Ron Hoeppel (NFESC)
 - Phone: (805) 982-1655
 - e-mail: hoeppelre@nfesc.navy.mil
- Patricia McFadden (EFA West)
 - Phone: (650) 244-2520
 - e-mail: pamcfadden@efawest.navfac.navy.mil
- Bruce Alleman (Battelle Principal Investigator)
 - Phone: (614) 424-5715
 - e-mail: allemanb@battelle.org